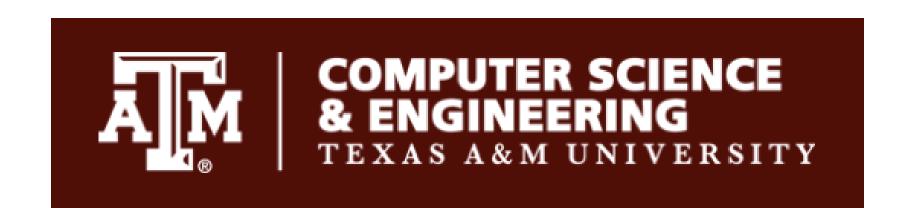
Explicitly Capturing Relations between Entity Mentions via Graph Neural Networks for Domain-specific Named Entity Recognition



Pei Chen¹, Haibo Ding², Jun Araki², Ruihong Huang¹

¹ Department of Computer Science and Engineering, Texas A&M University

² Bosch Research North America

{chenpei, huangrh}@tamu.edu

{Haibo.Ding, Jun.Araki}@us.bosch.com

Introduction

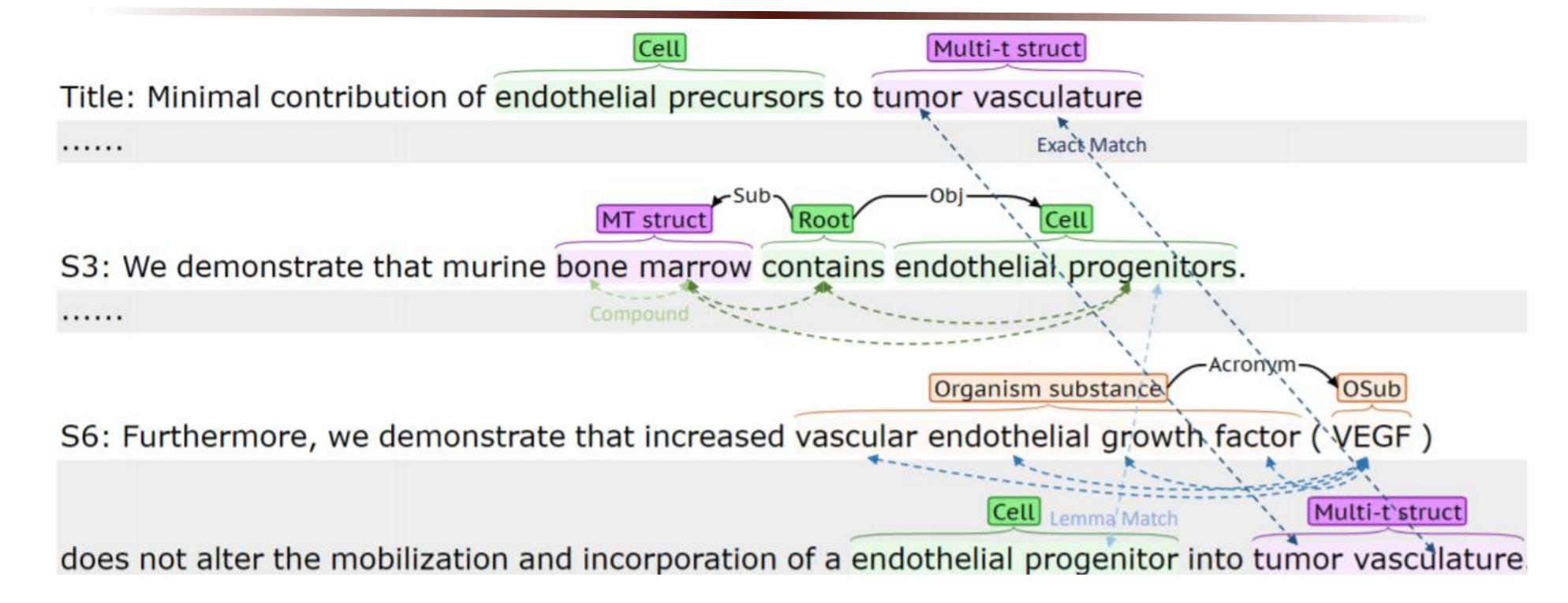
- The Named entity recognition (NER) performance is still moderate for **specialized domains** that have complicated contexts and jargonistic entity types.
- We hypothesize that the interactions of the related entity mentions (both document-level coreference and sentence-level dependency) will lead to better performance.
- Code for the system: https://github.com/brickee/EnRel-G

Overall Architecture



Use Graph Neural Networks to incorporate the relations between entity mentions.

Relations between Entity Mentions



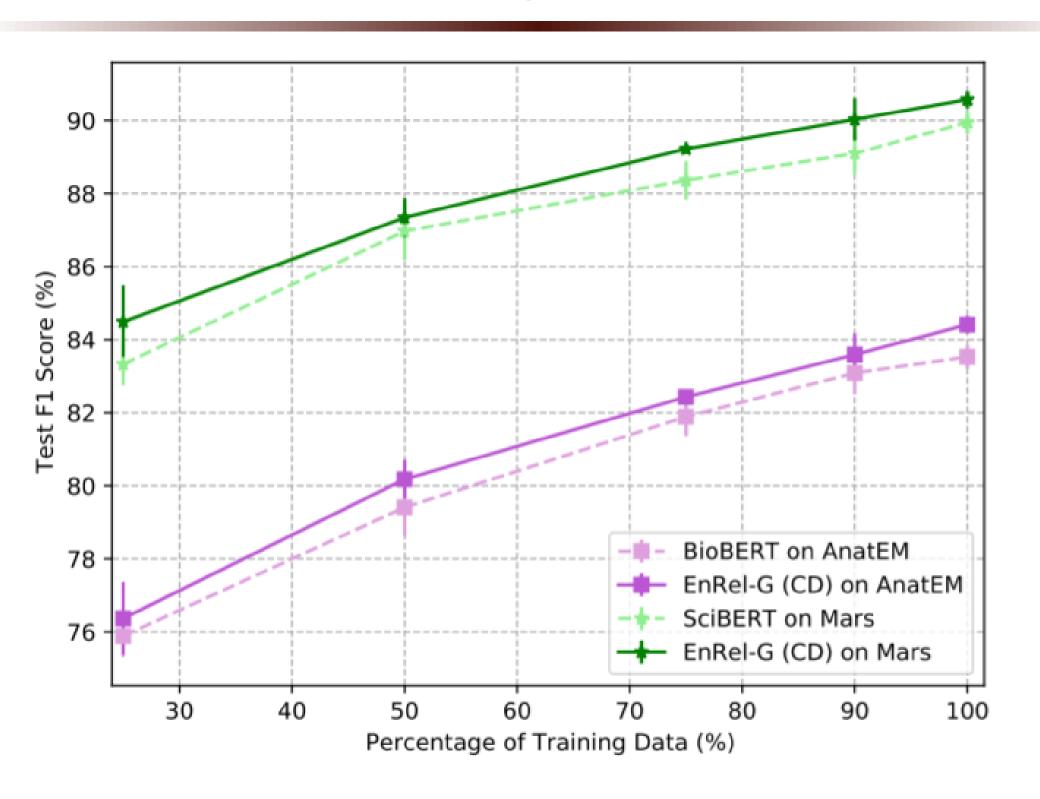
- The Coreference Relation Graph at document-level
- The Dependency Relation Graph at sentence-level

Results

Methods	Datasets	
	AnatEM	Mars
Wagstaff et al. (2018)	_	94.5 / 77.7 / 85.3
NCRF++	83.40 ± 0.34 / 76.96 ± 0.46 / 80.05 ± 0.12	$91.28\pm1.08 / 80.57\pm0.55 / 85.59\pm0.23$
FLAIR	81.07 ± 0.29 / 75.28 ± 0.57 / 78.06 ± 0.39	$90.67\pm1.02 / 81.45\pm1.41 / 85.81\pm0.62$
Pooled FLAIR	82.11 ± 0.50 / 77.55 ± 0.40 / 79.76 ± 0.34	$87.79\pm1.31 / 86.57\pm1.10 / 87.17\pm0.17$
Tuning Bio/SciBERT	83.94 ± 0.40 / 83.12 ± 0.30 / 83.53 ± 0.32	$90.93\pm0.66 / 88.99\pm1.61 / 89.95\pm0.64$
EnRel-G (C)	$84.65\pm0.67 / 83.69\pm0.31 / 84.17\pm0.41$	91.21±1.05 / 89.35 ±1.76 / 90.27±0.45
EnRel-G (D)	84.98±0.83 / 83.50±0.45 / 84.23±0.54	$92.66\pm1.16/88.03\pm1.46/90.29\pm0.53$
EnRel-G (CD)	84.86 ± 0.50 / 83.96 ± 0.32 / 84.41 ± 0.24	$92.57\pm1.00 / 88.65\pm1.50 / 90.57\pm0.47$

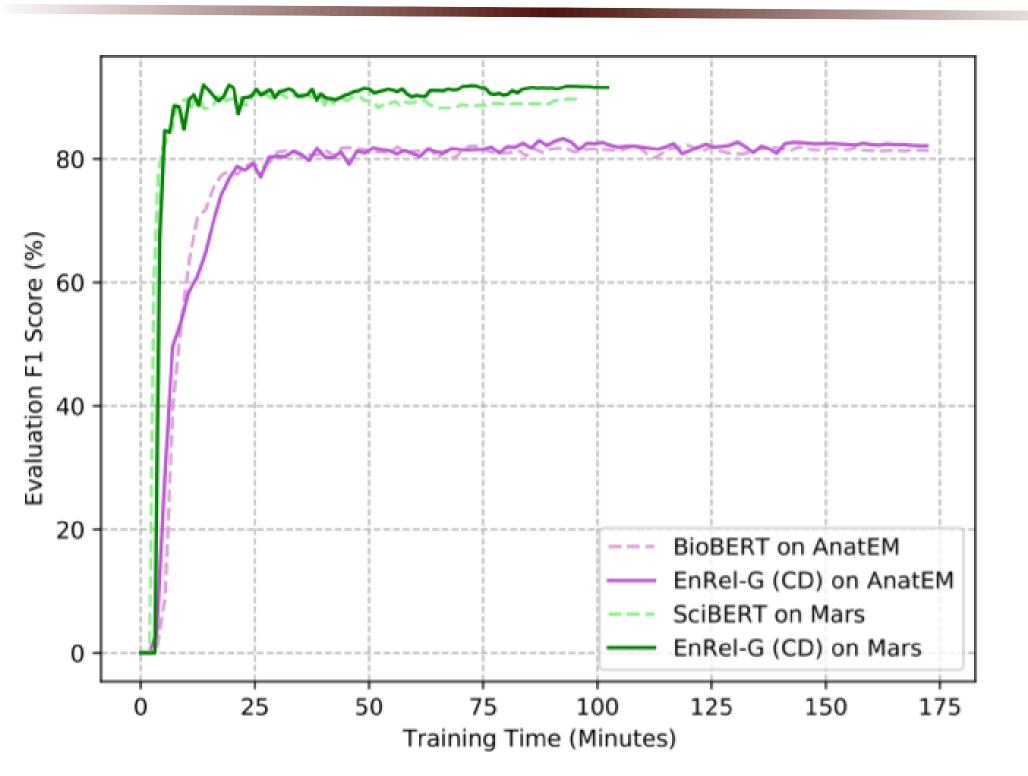
- Our system with both the global entity coreference and local dependency relations performs the best among all the systems.
- Either the coreference or dependency relations can help to improve the NER performance.

Learning Curves



System is effective when only a tiny amount of labeled data is available

Computation Cost



The lightweight approach does not increase the time cost compared to BERT models