

How Can We Know What Language Models Know?

Zhengbao Jiang^{1,*}, Frank F. Xu^{1,*}, Jun Araki², and Graham Neubig¹
Carnegie Mellon University¹, Bosch Research North America²
zhengbaj@cs.cmu.edu

LMs capture factual knowledge

Predictions of the BERT model using manually created prompts.

Tokyo is the capital of [MASK].

Mask 1 Predictions:

96.1% **Japan**

1.6% **Asia**

1.0% Tokyo

0.2% Korea

0.2% India

Manual prompts are suboptimal

DirectX is developed by [MASK]. [MASK] released the DirectX. DirectX is created by [MASK].

1	Intel -1.06	Microsoft -1.77	Microsoft -2.23
2	Microsoft -2.21	They -2.43	Intel -2.30
3	IBM -2.76	It -2.80	default -2.96
4	Google -3.40	Sega -3.01	Apple -3.44
5	Nokia -3.58	Sony -3.19	Google -3.45

Manual prompts are suboptimal

DirectX is developed by [MASK]. [MASK] released the DirectX. DirectX is created by [MASK].

1	Intel -1.06	Microsoft -1.77	Microsoft -2.23
2	Microsoft -2.21	They -2.43	Intel -2.30
3	IBM -2.76	It -2.80	default -2.96
4	Google -3.40	Sega -3.01	Apple -3.44
5	Nokia -3.58	Sony -3.19	Google -3.45

Inappropriate prompt might fail to retrieve facts that the LM does know

Motivations

- Any given prompt only provides a lower bound estimate.
- Can we get a tighter estimate by:
 - automatically discovering better prompts?
 - combining a diverse set of prompts?

Answer: Yes! Careful prompt design leads to up to 8.5% increase in fact retrieval accuracy.

Knowledge probing with prompts

1. Fact <Bloomberg L.P., founded_in, New York>

2. Prompt [X] was founded in [Y].

3. Predictions Bloomberg L.P. was founded in [MASK].

Mask 1 Predictions:

5.2% Chicago

4.1% London

2.8% Toronto

2.3% C

1.6% India

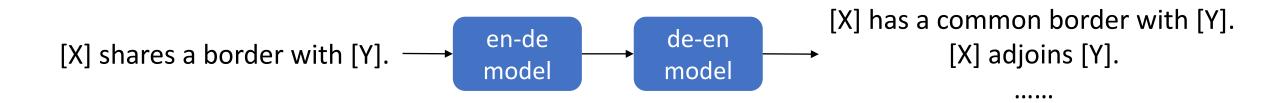
Prompt generation

- Mining-based
 - Middle-word
 Barack Obama was born in Hawaii. → [X] was born in [Y].
 - Dependency-based

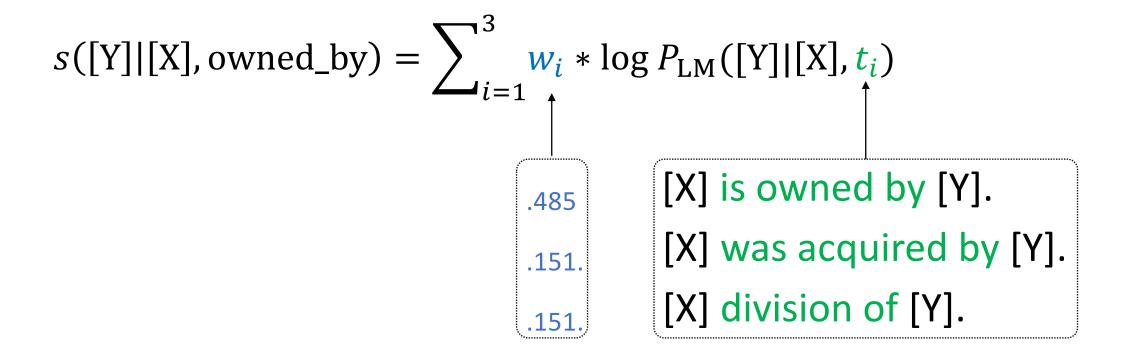
The capital of France is Paris. \rightarrow capital of [X] is [Y].

Prompt generation

Paraphrasing-based
 Back translation with beam search



Prompt ensembling



Experimental settings

- Datasets
 - LAMA

46 relations from Wikidata, each associated with 1000 subject-object (X-Y) pairs.

- LAMA-UHN
 - A difficult subset of facts from LAMA.
- Google-RE
 - 3 relations.

```
Relations

[X] was born in [Y].

(Allan Peiper, Alexandra), (Paul Mounsey, Scotland), ...

[X] plays in [Y] position.

(Johan Santana, pitcher), (Koke, midfielder), ...

[X] is developed by [Y].

(MessagePad, Apple), (Adobe Illustrator Artwork, Adobe), ...
```

Experimental settings

Methods

- Prompts
 - Man: manually created prompts.
 - Mine: mining-based prompts from Wikipedia articles.
 - Para: paraphrasing-based prompts from WMT'19 English-German models.
- Ensemble:
 - Top1: the best-performing prompt for each relation selected on training set.
 - Ensemble: combine 40 prompts by weights learned on training set.
 - Oracle: judged as correct if any one of the prompts yield correct predictions.

Metrics

Accuracy: accuracy average across relations.

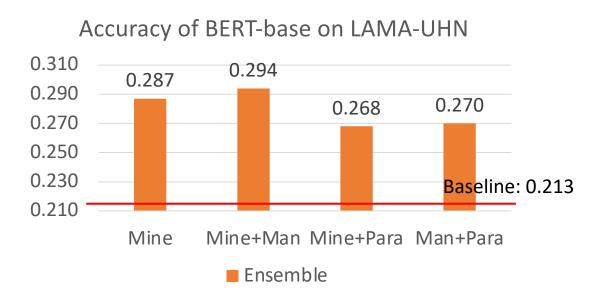
Results on LAMA

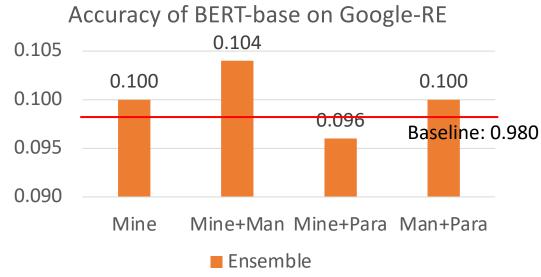
- Top1 > Baseline (Man): automatic prompts provide better accuracy.
- Ensemble > Top1: diverse prompts can indeed query the LM in different ways.
- Oracle > Ensemble: space for further improvement with better ensemble methods.

Accuracy of BERT-base using various prompts 0.6 0.526 0.507 0.481 0.479 0.396 0.389 0.327 $0.341^{0.373}$ 0.4 0.316 0.314 Baseline: 0.311 0.2 Mine Mine+Man Mine+Para Man+Para Ensemble Oracle ■ Top1 11

Results on LAMA-UHN and Google-RE

• Ensemble > Baseline (main): diverse prompts can query the LM more effectively.





Case study

Manual prompts Generated prompts [X] is affiliated with the [Y] religion. [X] who converted to [Y]. +60% [X] is represented by music label [Y]. [X] recorded for [Y].

+17%

Case study

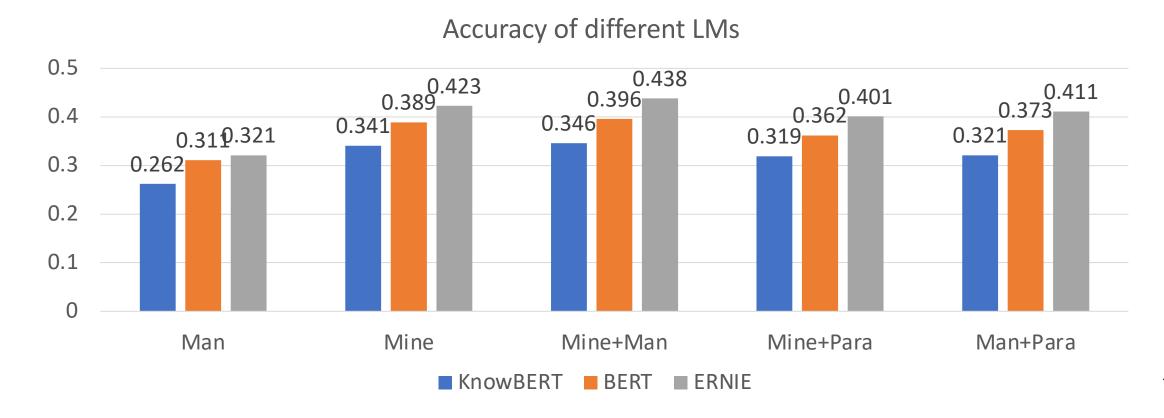
Manual prompts	Generated prompts	
[X] is affiliated with the [Y] religion.	[X] who converted to [Y].	+60%
[X] is represented by music label [Y].	[X] recorded for [Y].	+17%

Simple edits

```
[X] plays in→at [Y] position +23%[X] was created→made in [Y] +11%
```

Results of different LMs

KnowBERT < BERT < ERNIE



Cross-model consistency

Ensemble weights are consistent across models

- Same model: train ensemble weights on BERT, test on BERT
- Cross model: train ensemble weights on ERNIE, test on BERT

Conclusion

- Diverse prompts provide a tighter estimation of what LMs know.
- LMs are quite sensitive to how we query them.

Paper: https://arxiv.org/pdf/1911.12543.pdf

Code: https://github.com/jzbjyb/LPAQA